
International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 1

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Embedding Soft processor based

USB device driver on FPGA
Prof. Shashank Pujari

Abstract— Embedding a System on a Programmable Chip with in the constraint of available resources brings out ingenuity of a SoPC

designer. The paper covers an efficient Soft processor based USB communication device driver implementation on FPGA using a 10% foot

print so as to set aside the rest 90% of the logic resources of the programmable chip for other compute and control intensive tasks. Using a

Soft processor on FPGA to interface a peripheral is a convenient choice so that the task of the device driver development can be off loaded

to a software developer. Software developer takes a black box approach and uses the programmer model of the Soft processor and this is

where things can go wrong. SoPC designer looks critically at the device driver requirement and brings in hardware/software co-design

approach to think out of the box to meet the challenges of the constraint aware embedded design in terms of cost, size, memory,

performance and time to market.

Index Terms— Device Driver, Embedded, FPGA, Soft Processor, SOPC,

—————————— ——————————

1 INTRODUCTION

USB is an integral part of an embedded system requiring
communication between host PC and target system. There are
two types of USB controllers available in the market, one hav-
ing built in Microcontroller and other without it. The micro-
controller based USB controller has built in device driver,
which handles all data communication tasks, is an easy choice
but not very cost effective for small-embedded design targeted
for $10 cost. For example Cypress CY7C68013A- 16A family
USB controller has 8051 core and the unit cost is $5 which is
not economical for use in a $10 cost FPGA based embedded
product. To design a low cost FPGA based embedded system,
the cost of the USB2.0 device and the selection of FPGA should
be proper. In this paper a NXP USB 2.0 controller ISP1582 cost-
ing $3 and $10 Spartan-3 FPGA device from Xilinx are used.

For FPGA based design requiring USB data communication,
it is desirable to build the USB driver along with target design
in the FPGA. The USB interface logic should use minimal re-
sources of FPGA to accommodate other main logics. Present
paper discusses issues and solutions for embedding USB driv-
er in FPGA in a cost effective manner by a memory efficient
design. The hardware-software co-design approach is based
on the embedded soft processor and internal memory in side
FPGA. An 8-bit RISC Soft Micro Controller (SMC) core namely
PicoBlaze offered by Xilinx is used. The small footprint PicoB-
laze supports 1K Byte of instruction memory, which is not
sufficient to hold the complete USB device driver. A technique
for increasing the size of the instruction memory

by using a switchable tri-pair memory bank, there by scaling
the addressability of the soft processor, is the key motivation
behind this paper.

The paper is organized as follows; Soft processor is intro-
duced in section II, section III covers USB device driver flow,
section IV covers Design Implementation; section V covers
Hardware/software co-design approach with Tri-pair switch-
ed memory bank. Concluding remark is given in section VI
followed by acknowledgement and reference.

2 SOFT PROCESSOR

The PicoBlaze SMC core is embedded within the target
FPGA and requires no external resources. The SMC is opti-
mized for efficiency and low deployment cost. It occupies just
96 FPGA slices, or only 20% of an XC3S200 FPGA. The SMC
performs a respectable 44 to 100 million instructions per
second (MIPS) depending on the target FPGA family and
speed grade. The SMC works at 50 MIPS, high enough to han-
dle High-speed data rate (480Mbits) of USB2.0 controller. Pi-
coBlaze SMC is delivered as synthesizable VHDL source code
and hence the core is future-proof and flexible enough to be
adapted to future FPGA architectures, effectively eliminating
fears of product obsolescence. Being integrated within the
FPGA, the PicoBlaze SMC reduces board space, design cost,
and inventory.

A suite of development tools supports the PicoBlaze SMC

software development, including an assembler, a graphical
Integrated Development Environment (IDE), a graphical in-
struction set simulator.

For porting the Picoblaze SMC to FPGA devices of other

vendors such as Altera and Actel, the VHDL code has been
made vendor independent by using commonly available logic
primitives of the FPGA [1].

————————————————

 Prof. Shashank Pujari is currently with Sambalpur University Institute of
Information Technology (www.suiit.ac.in) , Jyotivihar, Burla, Sambalpur,
Orissa-768019
pujarishashank@gmail.com

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 2

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

3 USB DEVICE DRIVER

The USB device driver software flow chart is shown in Fig – 1.
After power on reset, the registers of the USB controller ISP
1582 are initialized for high speed (480Mbits) data communi-
cation, nos. of endpoint and DMA. Then the enumeration
process begins, which establishes communication between the
slave target USB device and the PC host. A set of descriptor is
sent from the target USB device to the host that describes the
device‘s USB capabilities and how they will be used. Next the
application communication begins. The host sends read or
write command to slave and in return the slave sends data
packets requested by host or receives data packets from host
respectively. All packet transactions are handled through in-
terrupts under DMA control. All types of communication i.e.,
Bulk, Interrupt, Isochronous and Control are handled through
proper initialization of USB device registers. The Processor
program is stored in three ROMs as shown in flow chart in
three respective shades i.e., Dark shade – ROM1 – All initiali-
zations, Light shade – ROM2 – Enumeration, transmit and
receive packet, No shade - ROM3 – USB decision control flow
and descriptors.

4 DESIGN IMPLEMENTATION

The design was implemented on a Spartan3 XC3S200 device
using Xilinx Kit, connected to a NXP ISP1582 device, over the
general-purpose connectors A1 and A2 available on the kit.
The clock speed of the FPGA device decides the speed of the
USB communication. The System clock of USB interface is 80
MHz and sufficient for High-speed 480 Mbits/sec USB 2.0
performance. The VHDL code is compiled on Xilinx ISE 7.2
Software tools. The assembly language program of Soft Pro-
cessor is compiled using KCPSM3 assembler. The internal and
external components of SPARTAN XC3S200 are shown in Fig -
2 i.e., Soft Microcontroller, Read/write FIFO Interface, USB
interface and an external NXP ISP1582 USB controller. Fig-3
shows the detailed internal blocks of the FPGA.

Fig –2 FPGA System Block diagram

Fig- 1 Flow chart of USB device driver

RESET

INTERRUPT

PRESENT

USB ENUM

INTERRUPT

ENDPOINT

RECV /XMIT

RECEIVE

ENUMERATION

COMMAND

START

RECEIVE

COMMAND

INIT USB

REGISTERS & DMA

Y

N

RECEIVE

N

TRANSMIT

ENDPOINT

TRANSMIT-

TER

TRANSMIT DATA

N

Y

TRANSMIT

ENUMERATION

DESCRIPTOR

Y

START

TRANSMIT

COMMAND

ENDPOINT

RECEIVER

RECEIVE DATA

N

Y

SPARTAN XC3S200-4FT256 FPGA

WRITE_ PORT

CLK_80MH

z

RESET

WR_CLK

FIFO FULL

SOFT

MICROCONTROLLER

WRITE FIFO

LOGIC

READ FIFO

LOGIC

READ PORT

FIFO EMPTY

RD_CLK

FIFO FULL
FIFO EMPTY

 OTHER LOGIC

READ

FIFO

USB INTERFACE LOGIC

USB_DATA
USB_ADDR

USB INTER-

FACE

LOGIC

CS

RD
WR

DREQ
DACK

DIOW
DIOR

EOT

USB

DEVICE

ISP 1582

WRITE

FIFO

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 3

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

SOFT MICROCONTROLLER

The SMC is implemented using Xilinx Picoblaze core availa-

ble with Xilinx Core Generator library. It has one 8 bit input port,

one 8 bit output port and one 8 bit port ID for selection of 256

input or output ports. It has 10 bit ROM address and accepts 18

bit instruction code from ROM. This ROM is internal to the

FPGA implemented using Block RAM. The processor fetches

instruction in one clock period and executes in next clock period.

There is one interrupt input and one interrupt acknowledge out-

put. Multiple interrupts can be gated by an OR gate.

The SMC over all controls the sub blocks. It initializes the

USB device and completes the Enumeration process and then
waits for command from PC host. It generates Read FIFO con-
trol signal, when it receives a USB read command from PC
host. The Read FIFO control signal are used to read data
stored in FIFO and then send it to USB. Similarly SMC gene-
rates Write FIFO control signal when it receives a USB write
command from PC host. The Write FIFO control signal are
used to write data received from USB into FIFO.

Fig – 3 FPGA functional block diagram

USB_DATA

USB_CS/

WE/
RE/
ADD [7:0]

D
A

-

T
A

_
O

U
T

D
A

T
A

_
IN

USB

INTERFACE

PICOBLAZE
PROCESSOR

IN
_

P
O

R
T

O
U

T
_

P
O

R
T

INTR

IN
_

L
A

T
C

H

O
U

T
_

L
A

T
C

H

O
U

T
_

L
A

T
C

H

PORT 0

PORT 1

PORT 0

RESET

ADD
[9:0]
DATA
[17:0]

D
A

T
A

_
IN

IN
_

L
A

T
C

H

RD_FIFO_FULL

RD_FIFO_CLK

CS/
WE/

RE/

A0
A1

A2 O
U

T
_
L
A

T
C

H

D
A

T
A

_
O

U
T

PORT 1

PORT 2

FIFO
INTERFACE

FIFO_EMPTY

FULL_INTR

RD_FIFO_EMPTY

RD_FIFO_EN

TIMER

O
U

T
_

L
A

T
C

H

O
U

T
_

L
A

T
C

H

PORT 4
PORT 2

CS_N

USB_ADDR

RD_N

WR_N

DREQ

DACK

DIOW

DIOR

EOT

INT

FIFO_DATA

10 MHz

IN
_

L
A

T
C

H

START

STOP

PORT 5

R
O

M
 3

80MHz

R
O

M
 2

R

O
M

 1

A
D

D
_

D
A

T
A

_
M

U
X

WR_FIFO_FULL

WR_FIFO_EN

WR_FIFO_EMPTY

WR_FIFO_CLK

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 4

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

DATA
[15:0] DATA

[15:0]

ROM Interface

The ROM is implemented inside the FPGA using Block

RAM. The ROM code is created by a standard text editor and
assembled using the KPCSM3 assembler provided by Xilinx.
The instruction set is provided in the user guide of the Pico-
blaze Processor. The ROM and the Soft Processor run by the
same 80 MHz clock. The addressability of Pico Blaze Processor
has been extended from 1K ROM to 3K ROM by address and
instruction data multiplexor logic.

FIFO Interface

The FIFO collects data from other logic of the FPGA. The

SMC monitors the FIFO empty and full signal during initial start

up. The FIFO works on dual clock and operates on separate write

and read clock. The depth and width of the FIFO are 512 Byte

and 16 bit respectively for the present design but can be resized

depending on applications. The SMC generates the FIFO enable

and read/write clock to read/write data.

USB Interface

The USB interface connects to an external USB device NXP

ISP1582. Additional DMA controller logic is implemented in the

FPGA to transfer data in DMA mode as shown in Fig – 4 and

explained in next paragraph. Interrupt generated by the USB de-

vice controls the SMC program execution flow shown in flow

chart Fig –1.

DMA Controller

The USB data transfer rate is at high-speed (480 Mbit/s).

The USB Interface has a DMA controller for fast data transfer
from board to USB host and vice versa as explained in follow-
ing section.

The USB controller NXP ISP1582 operates in slave mode

and the DMA controller of FPGA in master mode. The DMA
data will be stored in local Block RAM inside USB interface
first and then transferred. For reading data from USB host the
data is read by DMA and stored in local Block Ram and then
forwarded to processor. For writing data to USB host, Proces-
sor writes data to local Block Ram and then forwarded to USB
host through DMA. This method is used for small chunk of
data transfer. For large data transfer the DMA is directly be-
tween the FIFO and the USB device NXP ISP1582. The DMA
transaction per word is @80 nsec equivalent to 25 Mbytes/sec.

USB Controller

NXP ISP1582 has 16bit wide data bus and 256 addressable

registers and supports USB 2.0 standard. The USB controller
uses a 16-bit data bus access. For single-byte registers, the up-
per byte (MSB Byte) is ignored.

Fig – 4 USB interface with DMA controller interface

FPGA resource utilization

The design resource used in Spartan-3 device is shown in Ta-

ble-1. The resource utilization shows that there is 70% of the total

resources free to accommodate other logics of the system.

Table - 1 FPGA resource utilization

PROPERTY VALUE

TARGET DEVICE: XC3S200

LOGIC USED AVAILABLE UTILIZATION

SLICES 512 1920 26%

SLICE FLIP FLOPS: 503 3840 13%

4 INPUT LUTS: 819 3840 21%

BRAMS: 6 12 50%

USB COMMUNICA-
TION INTERFACE

CS_N

CS_USB

ADDR
 [7:0]

RD_N

WR_N

DREQ

DACK

DIOW

DIOR

EOT

INT

WR

ACK

USB_INT

USB_INT

RD

RST

CLK

DMA CONTROL-
LER

BLOCK RAM

U
S

B
 C
O
N
T
R
OL
L
ER

DE
V
IC
E
 N
X
P

IS
P
15
8
2

CS_DMA

P
IC

O
 B

L
A

Z
E

 S
O

F
T

 P
R

O
C

E
S

S
O

R
 ADDR

 [7:0]

D
A

T
A

 I
N

 [
1

5
:0

]

D
A

T
A

 O
U

T

[1
5

:0
]

A
D

D
R

 [
7

:0
]

R
D

W

R

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 5

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

5 HARDWARE/SOFTWARE CO-DESIGN APPROACH WITH TRI-PAIR

SWITCHED MEMORY BANK

The simplified flow chart of the USB device driver is

shown in Fig-5. The driver has been partitioned in three
main modules each occupying 1K. The USB registers are in-
itialized in ROM1. The main program for enumeration
process, transmit and receive data packet is managed in
second ROM2. Third ROM3 occupies decision control flow
and assorted subroutine functions including descriptor de-
tails. The memory bank switch program flowchart is shown
in Fig-6. This program is there at the end of each ROM as
shown in Table 2-3-4, which links the software modules res-
ident in three separate ROMs. The associated VHDL code is
given and its equivalent hardware is shown in Fig- 7.

Fig-5 Device driver flow

Fig-6 Memory Banks switch flow chart

The simulation diagram can be understood with ref-
erence to Table –2. It is seen that while switching from ROM1
to ROM2, the continuity of processor execution is maintained.
A dummy instruction ‗NOP‘ is inserted at the same address of
both ROM1 and ROM2. Actually there is no ‗NOP‘ instruction
in Picoblaze, it is mentioned for simplicity of explanation. Ac-
tual instruction used is ―AND s0, s0‖, which means logical
―ANDING‖ of the register s0 with it self. The total overhead of
switching between ROMs is 4 instructions.

Table 2 –MEMORY SWITCH PROGRAM IN ROM1

Table 3 – MEMORY SWITCH PROGRAM IN ROM2

Table 4 – MEMORY SWITCH PROGRAM IN ROM3

; VHDL CODE FOR ADDRESS & DATA MUX
 addr1 <= address when sel_rom = "00" else x"3FF";
 addr2 <= address when sel_rom = "01" else x"3FF";
 addr3 <= address when sel_rom = "10" else x"3FF";
 instruction <= instr1 when sel_rom = "00" else
 instr2 when sel_rom = "01" else
 instr3 when sel_rom = "10";
sel_rom <= When (Port_sel = 1) then Port_data(1 downto 0)
else sel_rom;

Fig- 7 Hardware equivalent of above VHDL code for Memory

Bank switch

Device In-
itialization
ROM1

Main
Program
ROM2

Subroutine
Functions

ROM3

ROM3

 ROM3

ROM2

 ROM2

ROM1

 ROM1

Rom1
Start

Jump to
Rom2

Jump to
Rom2
Start

Rom2
Start

Jump to
Rom3

Device In-
itialization

Main
Pro-
gram

Jump to
Rom3
Start

Rom3
Start

Jump to
Rom2

Subrou-
tine Func-
tions

R
O

M
 3

R

O
M

 2

R
O

M
 1

A
d

d
re

ss

 D
E

M
U

L
T

IP
L

E
X

O
R

 M

U
L

T
IP

L
E

X
O

R

SEL ROM [1:0]

P
IC

O
 B

L
A

Z
E

S
O

F
T

 P
R

O
C

E
S

S
O

R

 L

A
T

C
H

 PORTSEL

PORT DATA

A
d

d
r1

A

d
d

r2

A
d

d
r3

Instruction

In
st

r1

In
st

r2

In
st

r3

MEMORY_SWITCH_FROM_ROM2_ TO_ ROM3:
 ADDRESS 3EA

 0X3EA NOP

 0X3EB JUMP ROM2_ROM3_PROG
MEMORY_SWITCH_FROM_ROM3_ TO_ ROM2:

 ADDRESS 3EC

0X3EC LOAD Port Data, 01
0X3ED OUTPUT Port Data, PORT_SEL

0X3EE NOP

MEMORY_SWITCH_FROM_ROM2_ TO_ ROM3:
 ADDRESS 3E8

0X3E8 LOAD Port Data, 02

0X3E9 OUTPUT Port Data, PORT_SEL

 NOP
MEMORY_SWITCH_FROM_ROM3_ TO_ ROM2:

 ADDRESS 3EE

0X3EC NOP
0X3ED JUMP ROM3_TO_ROM2_PROG

MEMORY_SWITCH_FROM_ROM1_ TO_ ROM2:

 ADDRESS 3F0

0X3F0 NOP
0X3F1 JUMP ROM2_START

MEMORY_SWITCH_FROM_ROM1_ TO_ ROM2:

 ADDRESS 3EE

0X3EE LOAD Port Data, 01
0X3EF OUTPUT Port Data, FF
0X3F0 NOP

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 6

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

6 CONCLUSION

USB communication protocol stack was ported to an em-
bedded target system on a FPGA with minimal usage of logic
resources. A unique methodology of extending the address
ability of the PicoBlaze Soft Microcontroller from 1K to 3K, by
address and data multiplexing, was devised to accommodate
the USB driver.

Scope of the paper can be extended in future for comparative

study of a modified Picoblaze designed for 3K ROM addressabil-

ity with the present design as well as with a Dynamically Partial-

ly Reconfigurable FPGA, where instead of switching between the

three ROMs, ROMs are replaced by downloading the next ROM

on a clock boundary.

REFERENCES

[1] Farhad Marchant, Shashank Pujari, Manish Patil ―Plat-
form Independent 8-bit Soft core for SoPC‖, International
Multiconference of Engineers and Computer Scientists
2009, Hong Kong, 18 March, 2009

[2] Technical specs of Xilinx FPGA Spartan 3, NXP USB
ISP1582;

[3] Xilinx ISE 7.2, Chipscope & Modelsim tools manuals.
[4] USB 2.0 standard specification.
[5] Jan Axelson ―USB Complete‖

[6] www.nxp.com
[7] www.xilinx.com

http://www.nxp.com/
http://www.xilinx.com/

